Nili Fossae Diverse Noachian **Environments** Trough

> Jack Mustard, Bethany Ehlmann, J. R. Skok, Dave Des Marais, Nicolas Mangold, and Francois Poulet

Investigation of Diverse Habitable Noachian Environments (Hydrothermal, alluvial/fluvial, shallow crust/pedogenic) Sampling and characterizing

Impact ejecta

Hesperian volcanic

Phyllosilicate-bearing infill

Strongly altered Noachian crust

Unaltered Noachian crust

Fully Address E2E SAG Top 3 Objectives

Ca pyroxene

Life (A1) Planetary Evolution (B1)

Water (C1)

Noachian crust enriched in phyllosilicate

Multiple, Distinct Environments

- Noachian is when phyllosilicate formation was most intense: Access to the source environments
- Hydrothermal systems
 - Fractures as transport pathways for water, mineralization in fractures
 - No mounds, spring deposits, but those are surface features and not expected to survive to the present
- Sedimentary units
 - Infill of trough, formation of sapping channel
 - Regionally, layered units in crater floors, troughs
 - Erosion in go-to site leaves outcrops of remnants of these processes
- Subsurface groundwater or shallow crustal environment
 - Protected from destructive radiation environment
 - Abundant chemical energy sources
 - Fluid flow in the crust/groundwater transported nutrients/energy

Broad Mars Scientific Objectives

- Noachian Habitable Environments
 - Ancient crustal and genesis region
 - Fluvially transported sediments
 - Hydrothermal systems
- Impact processes
 - Superbly exposed ejecta from 65 km Hargraves crater
 - Ejecta blocks in a phyllosilicate-bearing matrix
 - Transport, fluidization, alteration
- Composition and character of ancient, unaltered crust
- Composition, mineralogy, and texture of Hesperian Syrtis Major lava: A datable surface the time stratigraphic marker
- Traverse the Noachian-Hesperian Boundary
- Phyllosilicate-Transported
- Phyllosilicate-In Place

Stratigraphy and Processes in Isidis-Nili Fossae

Isidis Basin and Syrtis Major lavas are major timestratigraphic markers

Significant gradation (sedimentary? aeolian? alluvial?) between Isidis basin formation and Syrtis lava emplacement

Clearly defined wet periods

Nili Fossae Trough

- Diverse Noachian environments present throughout the landing site
- Regional geology, represented in the landing site, indicates sustained interaction of water with the crust over an extended period as a consequence of multiple episodes of distinct character
 - Fe/Mg Phyllosilicates with variation in band position, strength of water absorption
 - Smectite clay transported and deposited in fluvial systems
 - Regional episode of kaolinite formation
 - Carbonate formation in association with olivine
 - Chlorite, zeolite, and hydrated silicate in association with impacts
- The region north east of Syrtis Major was persistently wet and the geologic context for understanding the interaction of water is extraordinarily well preserved and exposed
- The Nili Fossae Trough landing site sits within this region and provides exciting access to a diverse suite of environments

CRISM Observations
FRT00007BC8
FRT000064D9

Unaltered basement enriched in low-Ca pyroxene as capping unit and on the floor

Thick section of phyllosilicaterich Noachian basement exposed in Fossae walls

Phyllosilicate-bearing basement beneath volcanics

Syrtis Major Volcanics

Unaltered basement enriched in low-Ca pyroxene as capping unit and on the floor

Thick section of phyllosilicaterich Noachian basement exposed in Fossae walls

Phyllosilicate-bearing basement beneath volcanics

Syrtis Major Volcanics

FRT000064D9: 2.4, 1.8, 1.15 µm RGB

Mineralogy identified

Fe-oxide and crystaline hematite Fe/Mg Smectite with variety of band positions, H₂O content Kaolinite Carbonate

Pyroxene (Low and High Ca)
Olivine

11

5 kilometers

(Representative vertical and horizontal distances, not to scale)

5 kilometers

(Representative vertical and horizontal distances, not to scale)

Widespread gradation by alluvial and fluvial processes has filled in topographic lows

1 km thickness in impact craters Deposited in Nili Fossae troughs

Layered material on the floor of the sapping channel

→ Trough fill

Transported phyllosilicatebearing alluvial/fluvial deposits in the go-to site

5 kilometers

(Representative vertical and horizontal distances, not to scale)

Nili Fossae Trough

- Diverse habitable environments mitigates against a limited or pre-judged suite of environments
- Broader science goals advance understanding of Mars as a planet
- Diverse Noachian environments present throughout the landing site
- Regional geologic context, represented in the landing site, indicates sustained interaction of water with the crust as a consequence of multiple episodes of distinct character
 - Fe/Mg Phyllosilicates with variation in band position, strength of water absorption
 - Smectite clay transported and deposited in fluvial systems
 - Regional episode of kaolinite formation
 - Carbonate formation in association with olivine
- The region north east of Syrtis Major was persistently wet and the geologic context for understanding the interaction of water is extraordinarily well preserved and exposed 30